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The analytical characteristic method is an effective method for computing non- 
linear effects in inviscid supersonic flow problems. Although only linear equa- 
tions have to be solved, the results are essentially nonlinear, in the sense that the 
functional relations between physical state variables and space co-ordinates are 
nonlinear in the small perturbation parameter introduced, like the thickness 
ratio or incidence of a wing. This holds even for the first-order approximation of 
the method. 

In  the case of two-dimensional (plane or axisymmetric) flow the independent 
variables are characteristic co-ordinates, i.e. they are chosen so as to be constant 
along corresponding characteristic lines. The space co-ordinates are considered 
as dependent variables. In  three dimensions there is no unique definition of a 
characteristic co-ordinate system, because the manifold of characteristic surfaces 
or bi-characteristics is larger than is necessary for defining a co-ordinate system. 
The success of a three-dimensional analytical characteristic method, however, 
depends on the proper choice of the co-ordinate system. 

The present analytical Characteristic method for three-dimensional flow is 
based on the fact that three-dimensional flow behaves locally like axisymmetric 
flow if it is considered in the osculating plane. The corresponding ‘distance from 
the axis’ is a function of space depending on the flow field. No change of pressure 
occurs normal to the osculating plane and in isentropic flow no change of speed 
either. Therefore no co-ordinate perturbation is performed in this normal direc- 
tion. In the osculating plane the analytical characteristic methodis applied locally 
as in axisymmetric flow. In  the large the space co-ordinates are obtained by in- 
tegration along the main bi-characteristics. 

As an example the flow field on the suction side of a flat delta wing with sub- 
sonic leading edges is computed. As a main result one obtains shock waves in the 
neighbourhood of the leading edges following the expansion. 

1. Introduction 
The analytical characteristic method, due to Oswatitsch (1962), has proved to 

be very effective for computing two-dimensional (i.e. plane or axisymmetric) 
flow fields (Schneider 1963). It can be used also in symmetry planes of three- 
dimensional flow (Sun 1964) or for flow which is approximately plane or axi- 
symmetric (Niederdrenk 1969). In the general three-dimensional case, however, 
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the method may fail, if the characteristic co-ordinates, which are used as in- 
dependent variables, are not chosen in a suitable way. Before going into the 
details of this problem, the basic idea and the main advantages of the two- 
dimensional analytical characteristic method will be pointed out. A more de- 
tailed description of it will be given in 3 2 .  

The most important advantage of the method is that it reveals ‘nonlinear ’ 
effects of the flow, although only linear equations have to be solved, and this is 
also true for its first-order approximation. The expression ‘nonlinear ’ means 
that the functional relations between physical state variables and space co- 
ordinates are nonlinear in the small perturbation parameters introduced, like 
the incidence or thickness ratio of a wing. This is achieved by using characteris- 
tic co-ordinates as independent variables instead of space co-ordinates. Physical 
state variables and space co-ordinates are expanded in power series in a small 
perturbation parameter. By the choice of characteristic co-ordinates as indepen- 
dent variables one obtains also an improved representation of the characteristic 
lines. If only the physical state variables, as functions of the space co-ordinates, 
were expanded in a power series in the small perturbation parameter, as in 
acoustic theory, the characteristics would to any order of approximation be the 
same as in the undisturbed flow. 

A further advantage of the method is that the existence of weak shock waves 
can be discovered and their location and strength can be computed to the cor- 
responding order, as described in § 3. 

The difficulty of applying the analytical characteristic method to three- 
dimensional flow problems arises from the fact that characteristic variables are 
not defined uniquely in a three-dimensional flow field. Instead of two character- 
istic line elements there is an infinite number of bi-characteristic line elements 
through every point, generating the Mach cone. Consequently there is an 
arbitrariness in choosing three bi-characteristic line elements as a base for a local 
characteristic co-ordinate system. The choice of the co-ordinate system may, 
however, strongly influence the results obtained by the method. Therefore the 
question arises of whether there are bi-characteristics which are in some way more 
relevant than the others, and which are therefore suitable as a base for a local 
characteristic co-ordinate system. The answer to this question is given by con- 
sidering the flow locally in the osculating plane of the streamline. In  this plane 
the equations governing the flow have the same form as the equations for 
axisymmetric flow. The only difference is that the corresponding ‘distance from 
the axis ’ depends on the flow field. In  the binormal direction no pressure change 
occurs and in isentropic flow no change of speed either. This means that the 
changes in the physical state variables occur mainly in the osculating plane of the 
streamline. The two bi-characteristics lying in this plane are called main bi- 
characteristics. 

As a result of this consideration the two main bi-characteristics and the 
binormal are chosen as a base for the local co-ordinate system instead of three 
bi-characteristics. At  every point the analytical characteristic method for axi- 
symmetric flow is applied locally in the osculating plane of the streamline. No 
co-ordinate perturbation is performed in the binormal direction. 
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In  the large the co-ordinate system is replaced by the zeroth-order space 
co-ordinates, which are related to the characteristic variables by the Monge 
equation. Thus, the higher order space co-ordinates are given in terms of line 
integrals along the main bi-characteristics as functions of the zeroth-order space 
co-ordinates. For the case of isentropic flow the first-order approximation will 
give sufficiently good results. There is not much sense in considering a second- 
order approximation for the space co-ordinates without considering entropy 
changes as well. Only the second-order approximation to the physical state 
variables would be in no contradiction to the assumption of isentropy. 

2. The analytical characteristic method for two-dimensional isentropic 
flow 

For plane isentropic flow the equations in characteristic variables 1 and m 
have a simple form. The compatibility conditions are 

( M 2 - i ) i a q  a8 ( M 2 - l ) a a q  aL9 
-+ -=o.  (2 .1 )  q am am 0, -=- = 

q az ai 

The characteristic equations are 

--tan(@+a)-= ax aY 0,  -- ax tan(8-a)- aY = 0. 
az az am avL 

Here q denotes the flow speed, M the local Mach number, a the local Mach angle 
and 8 the angle of the streamline relative to some constant direction, usually the 
direction of the undisturbed flow. Further, x and y are Cartesian co-ordinates in 
the flow field. 

Equation (2.1) can be integrated exactly, but in order to satisfy the boundary 
conditions one has to know the solution of (2 .2) ,  which again depends on the 
solution of (2 .1 ) .  Because of this difficulty the dependent variables are expanded 
in a power series in a small perturbation parameter 7.  The undisturbed flow is 
assumed to be uniform, with speed qo, and Bo = 0: 

q = qo + 7q1(l, m) + . . ., B = 7e,(z, m) + . . . , ( 2 - 3 )  

(2.4) x = xo(f!, m) + 7xl(f!, m) + . . . , y = m) + Txl(f!, m) + . . . . 
First xo and yo are determined from (2.2). They are then used to satisfy the 
boundary conditions for ql and 61 are known, the first-order terms x1 and y1 
can be determined from (2.2). In  this alternating way higher order terms can also 
be computed. 

The solution when in the form of (2 .3 )  and (2 .4 )  defines functional relations 
q = q(x, y;7) and 0 = 6(x, y;7) which in general cannot be given explicitIy. If 
can be seen, however, from (2.3) and (2.4) that these functional relations are non- 
linear in 7,  even if only first-order terms of q, 8, x and y are considered. 

In addition, the functions q(x, y; 7 )  and B(x, y; 7 )  are in general not uniquely 
determined in the whole flow field, because there are usually regions in which (2.4) 
cannot be inverted uniquely. In order to obtain uniquely defined solutions 
q(x, y; T )  and 8(x, y; 7) one has to assume the existence of shock waves in the 
regions of non-uniqueness. 

6-2 
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z= consta11t 

I ,  2 

1 (1))  
FIGTIRE 1. Region of folding in (a )  the physical plane and 

( b )  the characteristic plane. 

3. Weak shock waves 
A region of the flow field in which the functions x(1, m) and y(1, m) cannot be 

inverted uniquely is called a region of folding. Such a region is multiply covered 
by characteristics. Since the physical state variables are functions of 1 and m, 
they are not unique functions of x and y in a region of folding. 

In  order to obtain a uniquely defined solution for the physical state variables 
one has to assume a shock wave in a region of folding. To explain this, a charac- 
teristic plane is introduced in which 1 and m are Cartesian co-ordinates, whereas 
the plane with Cartesian co-ordinates x and y is called the physical plane. The 
region of folding is shown in figure 1 (a) .  It is bounded by the curves L, and L,. 
The corresponding region in the characteristic plane is shown in figure I@).  
Three curves S,, X, and S, in the characteristic plane are related to every curve 
S in the physical plane. The region between S, and S, is indicated in the physical 
plane by the dotted part of the lines I = constant. If the region between S,  and 
S,  is cut off, one obtains a uniquely defined solution for the physical state 
variables in the physical plane. This solution changes discontinuously across the 
curve S, from the values which are given on the curve S, to the values on X,. 
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Thus S represents a shock wave, if it is chosen in such a way that the discontinuity 
satisfies the shock conditions across S. The numerical method for computing the 
location of the shock curve is described in § 6 for the case of a conical flow field. 

4. Basic equations 
4.1. Bquations in intrinsic form 

In  Cartesian co-ordinates (x, y, z )  the differential equations for steady flow of an 
inviscid ideal gas are, in terms of the density p, velocity vector v, pressure p 
and entropy S ,  

V(pv) = 0 (continuity), (4.1) 

(v . V )  v + p-lVp = 0 (momentum), 

(v. V) S = 0 (energy) 

with the notation v = (alaz, slay, apz) .  

Define s, n and b at every point as unit vectors in the direction of the streamline, 
its main normal and its binormal. The derivatives in these directions will be 
written briefly as 

By multipling the vector equation (2.2) by s, n and b, and introducing the flow 
speed q for which the relation v = qs holds, one obtains the following scalar 

s . v = alas, XI. v = alan, b . V = alab. 

equations : 

aplab = 0. ( 4 4  

Assuming isentropic isoenergetic flow, one can show with the help of the energy 
equation that (4.4) can be replaced by the more general relation 

qdq+p-ldp = 0, (4.7) 

which is used to eliminate the pressure p .  The density p is eliminated by the 

(4.8) 
relation 

which holds for isentropic flow. Here a denotes the speed of sound. 

equations for the unknown velocity: 

dp = a-2dp, 

If (4.7) and (4.8) areinserted into (4.1), (4.5) and (4.6) one obtains thefolIowing 

( l - $ ) ~ + q ( n . $ ) + q ( b . $ )  = 0, 

as aq 
(p.--- = 0, as an 

(4.9) 

(4.10) 

aqlab = 0. (4.11) 
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The speed of sound a will be expressed in terms of q using the energy equation in 
the form 

a2+ $(K - 1) q2 = constant, 

where K denotes the ratio of specific heats. 
Equations (4.9)-(4.11) reveal the relation of general three-dimensional flow to 

plane or axisymmetric flow. The term b . aslab is zero for plane flow. For axisym- 
metric flow it is inversely proportional to the distance from the axis. This shows 
that the surface elements which are generated by the vectors s and n play locally 
the role of the symmetry plane of two-dimensional flow. Further, changes in the 
quantities q, p and p occur only in these surface elements because of (4.6), (4.8) 
and (4.1 I) .  Therefore the two families of bi-characteristics, which are composed 
of line elements lying in these surface elements, are called main bi-charac- 
teristics. 

4.2. Relations along the main bi-characteristics 

The unit vectors in the directions of the main bi-characteristics are denoted 
by 1 and m. The derivatives in these directions are 

1. v = alai, m. v = atam. 

In  terms of the Mach angle a the vectors 1 and m are related by definition to the 
vectors s and n by 

1 = scosafnsincr, m = scoscr-nsina. 

The local Mach number M = q/a is related to the Mach angle by 

sina = 1/M. 

In  terms of the derivatives a/aZ and a/am equations (4.9)-(4.11) become 

(4.12) 

(4.13) 

4.3. Monge equation 
For the space co-ordinates the Monge equation is valid along any bi-charac- 
teristic. In Cartesian co-ordinates this equation is 

( ~ 2 - ~ 2 - ~ 2 ) d ~ 2 + ( a ~ - u ~ - w ~ ) d y ~ +  (a2-u2-v2)dz2 

+ 2 ~ w d y d ~  + 2uwdxd~ + 2uvdxdy = 0. (4.14) 

Using this equation along the two main bi-chamcteristic directions one obtains 
two equations, which will serve to determine the space co-ordinates. They will be 
completed by postulating that no co-ordinate perturbation is performed in Dhe b 
direction. 
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4.4. Equations in Curtesiun co-ordinates 

In  the following (4.9)-(4.11) will be used also in terms of Cartesian co-ordinates. 
The components of v in the x, y and z direction are denoted by u, v and w respec- 
tively. In terms of the velocity components (4.9)-(4.11) become 

av aw au auj au av 

(a2 ay) (a, ax) (ay ax) 
+vw -+- +uw -+- +uw -+- = 0, (4.15) 

v x v = o .  (4.16) 

Because of (4.17) a velGcity potential 4 can be introduced: 

v = vg. 

In terms of 4 equation (4.16) becomes 

(4.17) 

5. Dependent and independent variables 
In  the following the dependent variables are u, v and w, representing the 

physical state variables, and the Cartesian space co-ordinates (z, y, 2). 

The independent variables are denoted by xo, yo and zo. They are defined to 
be equal to the Cartesian space co-ordinates at  the zeroth order of approximation. 
The relation of the variables xo, yo and zo to the local characteristic co-ordinates 
is given by 

where /32 is short for M i -  1, Mo denoting the Mach number of the undisturbed 
flow. 

Relations (5.1) are at  the zeroth order of approximation identical to the Monge 
equations and are therefore a t  this order of approximation valid along any bi- 
characteristic. At higher orders of approximation, however, they hold only 
along the main bi-characteristics. Nevertheless the space with Cartesian co- 
ordinates (xo, yo, x o )  is called the ‘characteristic space’. 
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6. Zeroth-order of approximation 

perturbation parameter T :  

Tine dependent variables are expanded in a power series with respect to  a 

v = v,+7V1(X,,y,,Z,)+... . (6.2) 

The zeroth-order velocity is determined by the undisturbed flow, which is 
assumed to be a uniform flow in the x direction with velocity vo = (u,, O , O ) ,  
sound speed a, and Mach number M, = uo/ao. The zeroth-order space co-ordi- 
nates are given by the definition of the independent variables. The zeroth-order 
term of s is given by 

so = (l,O, 0). 

The zeroth-order terms of the vectors n and b, however, contain the unknown 
first-order terms vl and wl. Since n is defined as a unit vector in the direction of 
as/&, one obtains 

no = (0, Y ,  Y‘), (6.3) 

with 

and for b,, which is orthogonal to no and so, 

Since 1, and m, are needed to determine xl, y1 and xl, one has to compute v1 first. 

7. First-order of approximation 
By inserting (6.2) into (4.15) and (4.16) and observing that at  zeroth order 

a a a a a a  
ax axo> ay ay,? a2 az, 

_ -  _ -  -- -=-  _ -  

one obtains the equations 

v, x v1 = 0. ( 7 . W  

t The symbols V, x and V, denote the operators V x and V with respect to (zo, yo, 2,). 
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In terms of a first-order potential q51 which is defined as 

v1= V O h  (7.3)t 

a 2 4  a2+1 a2+ 

ax; ay; az; 
equation (7.1) becomes P 2 L  - - - 2 = 0. (7.4) 

With v, computed from (7.3) and (4.4), I, and m, are given by (6.6) and (6.4). 
In  the first-order approximation to the Monge equations the derivatives 

a/aZ and a/am are equal to 1,. V, and m,. V, respectively; they are denoted by 
a/aZ, and a / h , . f  

Using (6.6) the first-order approximation to the Monge equations becomes 

An additional equation for the first-order space co-ordinates is obtained by 
postulating that no co-ordinate perturbation is performed in b direction: 

y’y, - yz, = 0. 
Using this equation one can integrate (7.6) : 

(7.7) 

Here the integrals are to be taken along the main bi-characteristics. 

8. Discussion of the first order of approximation 

order approximation of the present method: 
The combined solutions of (7.1), (7.2) and (7.8) represent the result of the first- 

(8.1) 

(8.2) 

U(X, Y, z )  = uo + 7ui(xo, YO, zo), 

x = xo + 7x1(xo9 YO, 4, 
Y = YO + ~ 1 ( ~ 0 ,  YO, d,  
2 = 20 + 721(xo, YO, 2 0 ) .  i 

t See footnote on p. 88. 
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Consider first the case when ul(xo, yo, z,) can be approximated by the first two 
terms of a Taylor series along x1 = (xl, yl, zl) : 

~1(xo ,  YO, 2 0 )  = u1(x2 Y, 2 )  - ~ ( x 1 .  V) ~ 1 ( x ,  Y, 2 ) .  (8.3) 

By inserting (8.3) into (8.1) one obtains a solution which differs from the first- 
order solution of acoustic theory by the second-order term 

- ~ ~ ( x 1 .  V) ~ 1 ( x ,  Y, 2). (8.4) 

It is, however, not the purpose of the present method to give just a second-order 
effect. This could have been done earlier using a higher order acoustic theory. 
In  the present method interest is concentrated on those regions in which (8.3) 
does not hold. I n  this case the nonlinear functional relation ul(x, y, z ;  7) is such 
that it cannot be expanded in a power series in 7. Thus, one could not obtain 
solutions depending on 7 in this way from acoustic theory to any order. 

Examples of regions in which (8.3) does not hold are the following. 
(i) The neighbourhood of subsonic leading edges of wings, where u(xo, yo, z,) 

becomes infinite usually. 
(ii) The neighbourhood of surfaces which correspond to shock waves. As 

described in § 3 there are two or more surfaces in characteristic space correspond- 
ing to a shock surface in physical space. In  the neighbourhood of these surfaces 
there is usually a surface on which the normal gradient of the normal velocity 
component is infinite or even with infinite values of the velocity components. 

9. Second order of approximation 
The equations for the second-order velocity components are given by the 

second-order terms of (4.15) and (4.16)) observing that a t  first order the relations 
between the derivatives in physical and characteristic space are 

(9.1) 

By considering further (7.1) and (7.2) one can write the second-order equations 
in the form 

a a l.v,, - =--- . a a ax a a ax 
ax ax, ax, ay0 ay0 ax a%, az, -=--- l.vo, ay=--- 

v,x (u2-(xo.vo)u1) = 0. (9.3) 

In  (9.2) essential terms would cancel if the relations (7.8) were inserted. It is, 
however, more convenient to use the equations in the forms (9.2) and (9.3). Using 
the components of the vector 

as new dependent variables one has to solve the same equations as in second- 
order acoustic theory. Because of (9.3) one can introduce a potential for the 
vector u;, whereas there is usually no potential for the vector u2. 

u; = u, - (xl. V,) u1 (9.4) 
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For all higher order terms of the velocity, component equations of the form 
of (9.2) and (9.3) have to be solved. 

In  order t o  obtain the second-order terms of the Monge equations one has to 
express the first-order parts of the derivatives alal and slam in terms of deri- 
vatives with respect to zo, yo and zo. First the terms 1, and m, of the vectors 1 
and m are computed using the results of (9.3) and (9.2). Using the relations 
(9.1) and (7.8) one obtains 

Thus the secoiid-order terms of the Monge equations have the same form as 

The right-hand sides of (9.6) contain only the known functions F and G, which 
are obtained by expanding the Monge equations and using the relations (9.5). 

All higher order terms of the space co-ordinates will be given by relations 
of the form (9.6). 

10. Example: upper side of a conical flat delta plate with subsonic 
leading edges 

Conical flow problems are well suited for studying general three-dimensional 
flow problems, because conical symmetry does not change the three-dimensional 
nature of the flow, as plane or axial symmetry does. The problem of nonlinear 
conical flow has been considered by many authors. A survey of methods and 
results has been given by Bulakh (1970). 

The method of computing the location and strength of weak shock waves by 
solving linear equations was described first by Lighthill (1949). For the case of a 
wing with subsonic leading edges and arbitrary cross-section the present method 
gives at  first-order formulae for the location and strength of the head wave 
similar to those given by Lighthill; the only difference is in the boundary con- 
dition of the starting linearized solution, because the present method is applied 
in the whole flow field and not only in the neighbourhood of the shock wave. The 
span of a wing in characteristic space is usually different from the actual span 
in physical space. This may have an essential effect on the location and strength 
of the shock wave, e.g. if the leading edges are nearly sonic. 

A much more complicated situation occurs in the case of inner shock waves, 
such as those at  the leading edges on the upper side of an inclined flat delta wing 
with nearly sonic leading edges. Except in the case of a head wave, no a priori 
assumptions can be made, like assuming the shock shape to  be approximately 
a circular cone or the flow in front of the shock to be uniform. In the following 
example not even the existence of a shock was presumed from the beginning. 
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If a characteristic method is applied to a conical flow problem, it has to be 
treated first as a three-dimensional problem, because the conical gasdynamic 
equations, which contain only two independent variables, are of elliptic type. 
Since in conical flow the physical quantities are constant along straight lines 
through the origin, the following conical co-ordinate systems are used in charac- 
teristic space and in physical space: 

go = xo, go = yo/zo, co = zo/xo in characteristic space, 

6 = x, 7 = y/x, 6 = x/x  in physical space. } (10.1) 

The physical quantities are functions of go and Q only. The potential g5 has 
the form 

The equation for the function 7, which is called the conical potential, is at first 
order, according to (7.3)' 

$ = E o i v l o ,  b). 

(10.2) 

The linearized solution for the inclined conical delta plate has been given by 
Robinson (1946). It is given here in a similar co-ordinate system. 

First a Lorentz transform is applied, such that the inclined wing is located in the 
symmetry plane of the undisturbed Mach cone. The transformed co-ordinates 
are denoted by (Eo,7j,,[o). A new conical co-ordinate system is introduced, 
leaving 5, unchanged: 

Tjo  = B-' cos 'p cos @, co = I - kh2 sin2 'p)* sin $, (10.3) 

where k, denotes the zeroth-order span of the wing and kh2 = 1 - k;. In these 
co-ordinates the conical velocity potential for the flat delta plate at an inclination 
r is found to be 

(10.4) 

where E(kh) denotes the complete normal elliptic integral of the second kind. The 
velocity components obtained from the potential are 

u,, kg r cos $ sin cp (1 - kh2 sin2 (p)* 

- E(kh) ki cos2 $ + kh2 cos2 'p ' u -- ( 10.5 a) 

uo kg r kh2 cos 'p sin 'p (1 - kh2 sin cp), E(q, h$) 
' - E(kh) kg(kt cos2 @ + kA2 cos2 'p) kg ' (10.5b) -- v -- 

u, k; r cos @ sin @ sin 'p w -- ' - E(kh) k$c0s2$+k~~coscp' (10.5~) 

Since at the leading edges cos 'p = 0 and cos $ = 0 the velocity components have 
singularities there, corresponding to the fact that the expansion around the 
leading edges is accompanied by a rather higher %ow speed. 

The first-order space co-ordinates have the form gof(Tjo, c0), otherwise there is 
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no conical symmetry in physical space. The first-order conical co-ordinates are 
related to the fist-order Cartesian co-ordinates by 

(10.6) 

Only yl and Cl are relevant; they are functions of 7, and co only. t1 can be elimi- 
nated by the assumption of no co-ordinate perturbation in the binomial direc- 
tion 

g1 = - (7’71 - Xl)/(Y’70 - 7Jco), (10.7) 

however, special considerations have to be made in the neighbourhood of those 
points or lines on which f?jo-y<o = 0. 

The two unknown functions rl and Cl are then obtained from the Monge 
equations, observing that for functions depending on Tjo and to only the deri- 
vatives a/a.l0 and a/am, are given by 

1 (10.8) 

The integration of the Monge equations has been carried out numerically, be- 
cause their right-hand sides and the functions y and y‘, derived from (10.5), are 
complicated functions of To and go. 

Only along the wing surface can they be integrated analytically, Since at the 
wing surface 7 is equal zero and from (10.5) one finds y = 0, the derivatives 
(10.8) reduce to derivatives with respect to < only. Therefore one cannot request 
that cl at the wing surface be zero. This means that the mapping from charac- 
teristic space into physical space changes the span of the wing. One finds that the 
span becomes smaller on the upper side and larger on the lower side, because u1 
is positive on the upper side, whereas it is negative on the lower side. Therefore 
on the upper side one has to choose the parameter k, larger than the given span 
k of the wing, whereas on the lower side one has to choose Lo smaller than k. 
Integration of the Monge equation along the wing surface gives the relation 

( K +  1) M i  ki 
p3 

k = k,- 

If k reaches values close to unity, k, has to be chosen larger than one. The solu- 
tion, which is obtained by formally setting k, > 1 in (10.5), is not equal to the 
acoustic solution for a wing with supersonic leading edges, although the zeroth- 
order leading edges are located outside the undisturbed Mach cone. The solution 
becomes double valued in the region outside the undisturbed Mach cone formed 
by the wing, the Mach cone and its tangents through the leading edges. This can 
be seen from the definition of the co-ordinates (10.3), which are double valued 
in this region. But since the co-ordinate perturbation has also two values in every 
point of this part of characteristic space, one obtains a uniquely defined solution 
in physical space, except in a small region, in which a shock wave is postulated, 
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1’ 

Mach cone 7 

FIGURE 2. Wing with shock waves and Mach cone in Cartesian co-ordinate system. Mach 
number of undisturbed flow M,, = 2, wing span k/P = 0.5, angle of attack T = 0.06 rad. 

as described in $3, in order to obtain a unique solution. It is known that a shock 
runs upward from the leading edge, owing to overexpansion about the leading 
edge. This shock has been considered locally in the neighbourhood of the edge 
by Fraenkel & Watson (1964). The local solution was given first by Guderley 
(1954) for the case of a plane flow over an inclined flat plate. The shock wave does 
not begin exactly at the leading edge, but at some very small distance from the 
edge; however, within the accuracy of the present method it may be assumed to 
start at  the leading edge. 

The location of the shock is then computed by the following method. Assume 
one point of the shock wave to be known; its co-ordinates are denoted by (r:, c:). 
As described in $ 3, there are two points of characteristic space corresponding to 
(r:, c:). These points are denoted by (r,*,, [,*s) and (92, g:J, corresponding to 
the state (ul, vl, wl) in front of the shock and the state (al, a,, a,) behind the shock. 
In order to compute a neighbouring point (rS, Q) of the shock one has to compute 
the corresponding points (qos, cOs) and (qOs, g,) a t  the same time. Thus six equa- 
tions are necessary to compute a neighbouring point. These equations are 

(10.9) I T S  = 70s  + Tl(rOs7 Cos), c s  = cos + C I ( T O S >  Gosh 
7 s  = 9 0 s  + r1(90s, Pos), cs = Po, + Cl(?OS, Po,) 

and two equations obtained from the shock conditions. The continuity of the 
velocity components tangential to the shock wave is in conical flow satisfied 
by the condition 

M r o s ,  COS) = $l(? l̂oss, Po,). (10.10) 
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FIGURE 3. Location of shock waves. Mach number of undisturbed flow M, = 2, wing span 
k//3 = 0.5, angles of attack T = 0.04, 0.05, 0.06 rad. 
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FIGURE 4. Pressure jump across shock waves. Mach number of undisturbed flow 
Mo = 2, wing span k//3 = 0.5, angles of attack T = 0.04, 0.06, 0.06 rad. 

~ 

The jump condition normal to the shock is 

where u, and an denote the velocity components normal to the shock and ut 
the component tangential to the shock; c+ denotes the critical velocity of sound. 

It is assumed that (10.9)-( 10.11) can be expanded in the direction of the shock 
(not normal to it !) in terms of the small parameters 

u, a, = c*2- [ ( K  - 1 ) / ( K  + I)] u;, (10.11) 

!I:-% c:-cw !IZfs-Tos, G - C o s >  %?-%los, SZfs-50s. (10.12) 
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Thus six linear equations have to be solved for the six unknown values (10.12) 
This has been carried out numerically. Starting with the point at  the leading 
edge, the location of the shock wave is computed up to its end-point. The shock 
strength is computed at  the same time from the values of the velocity at  the 
points (qos, cOs) and (qos, to,,). At the end-point the shock strength vanishes. 

Figure 2 shows the wing with the shock waves which arise at the leading 
edges and end a t  some distance from the wing, becoming infinitely weak at  the 
end-points. Figure 3 shows the location of the shock waves for three different 
values of incidence. Figure 4 shows the pressure jump across these three shocks. 
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